2004 Diesel Engine Emissions Reduction Conference Coronado, California August 29-September 2, 2004

Fuel Processor Enabled NOx Adsorber After-Treatment System for Diesel Engine Emissions Control

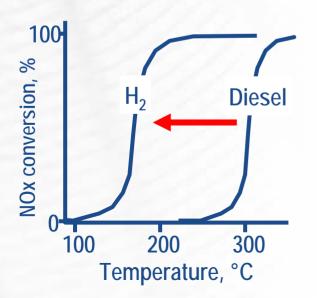
R. Dalla Betta, D. Sheridan, J. Cizeron Catalytica Energy Systems Inc. Mountain View, California

Outline

- Why use a fuel processor for NOx trap regeneration
- Overview of the fuel processor (XFP—Xonon Fuel Processor)
 - Application configuration
 - System efficiency
- Engine performance results
 - Fuel penalty
 - Low temperature operation
 - Operating range
 - NOx trap capacity
 - Desulfation of LNT
- Summary

Advantages of a Diesel Fuel Processor

What the fuel processor does

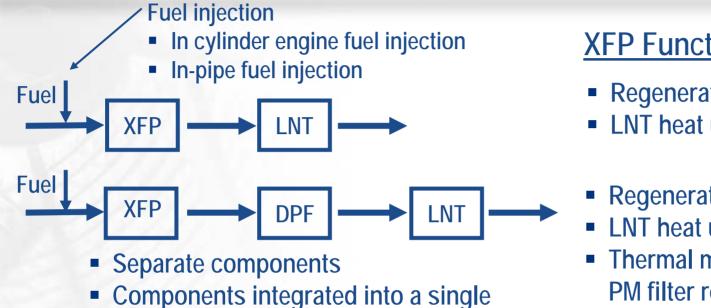

#1_Efficiently converts diesel fuel to REACTIVE REDUCTANTS

Benefits of Reactive Reductants

Regenerate the NOx trap at low temperatures H₂ shown to regenerate NOx trap at 150°C

Reactive reductants used very efficiently by NOx trap

Complete regeneration of NOx trap capacity allowing minimum LNT volume



$$2NO_2 + 4H_2 \rightarrow N_2 + 4H_2O$$
Theoretical reductant
Requirements
$$\frac{H_2 \text{ or CO}}{NOx} = 2$$

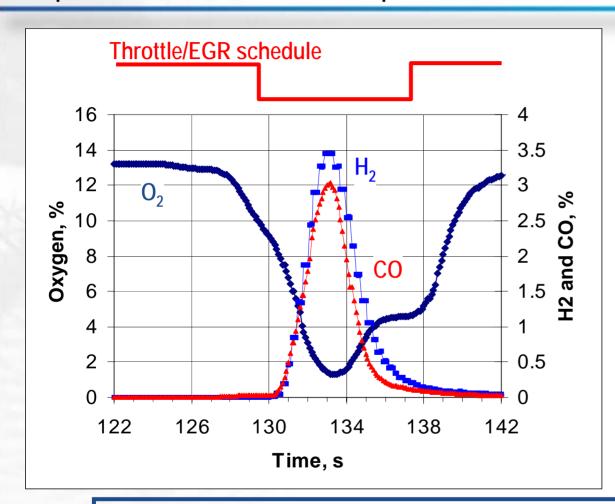
Large NOx trap capacity over wide temperature range

Application Configuration

XFP Functions:

- Regenerate LNT
- LNT heat up and desulfation
- Regenerate LNT
- LNT heat up and desulfation
- Thermal management during PM filter regeneration

Technology for fuel injection integrated into the fuel processor package



container

- Improved low temperature performance
- Use of "off-the-shelf" injector components

Operational Description of XFP

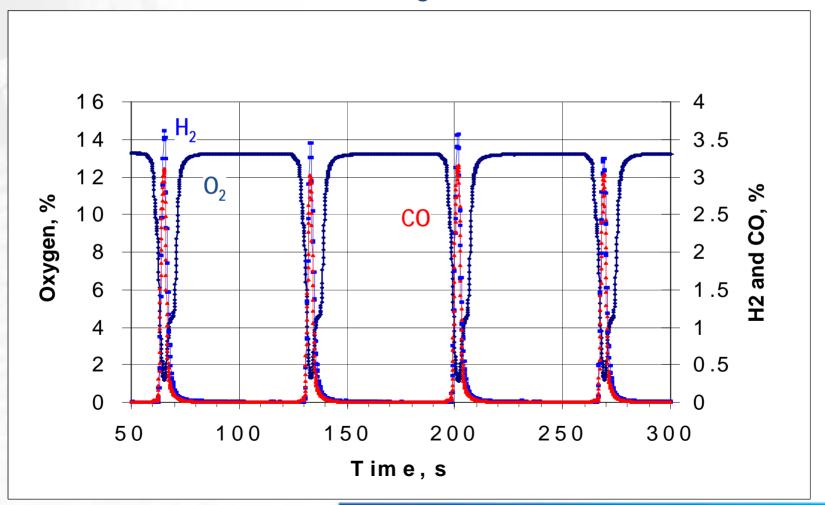
Test configuration

- 7 liter engine
- Gas analysis downstream of the XFP

Cycle details

- Engine throttled to give exhaust with 5% O₂ during regeneration cycle
- Rich period produces ~3%
 H₂ and CO
 - 0.4 to 4% H₂ and CO
 - H₂/CO ratio ~ 1
 - Rich pulse length can vary from <1s to many seconds

Note: Engine management only required to to lower exhaust O₂ to ~5-7%.


→ Minimizes impact on engine operation

Lean-Rich NOx Adsorber Cycle

Typical engine cycle

• 60 s lean with 3 second rich regeneration



XFP Fuel Efficiency--Discussion

NOx trap (LNT) regeneration requires two conditions to be met

- 1. O₂ in exhaust must be reduced to zero
- 2. Reductant must be supplied to reduce stored NOx and regenerate the LNT
- Sources of fuel usage
 - Consume O₂ in the exhaust
 - Reductant to regenerate the NOx trap

XFP Operation

XFP design is optimized to achieve

- Very low fuel requirement to heat up the fuel processor components
- High activity for combustion of O₂ in entire exhaust flow
- Efficient conversion of fuel into H₂
 and CO

5 liter engine test

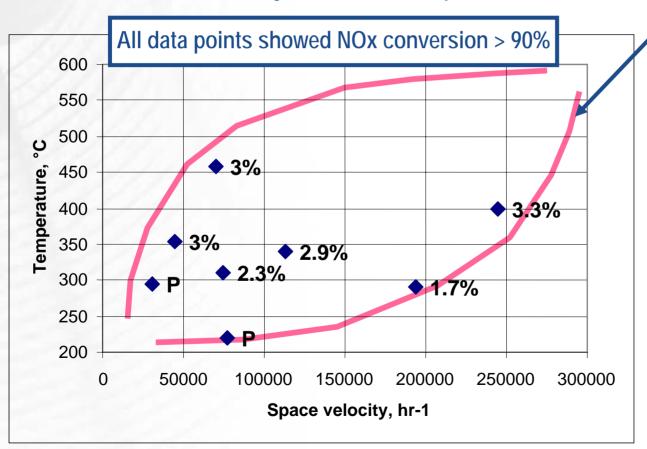
- Older XFP-1 design
 - XFP unit oversized for this engine

5 liter engine5 liter NOx trapTest at steady state condition

		XFP inlet temperatur	Engine	Lean trapping	NOx	Fuel
Speed	Load	е	out NOx	time	conversion	penalty
rpm	Nm	°C	ppm	S	%	%
1600	170	354	130	120	93	4.4
				180	95	3
1600	326	458	380	120	73	2.5
				120	85	3

8 liter engine test

- XFP-1.1 design
 - Improved design with reduced fuel consumption
 - XFP unit sized to this engine

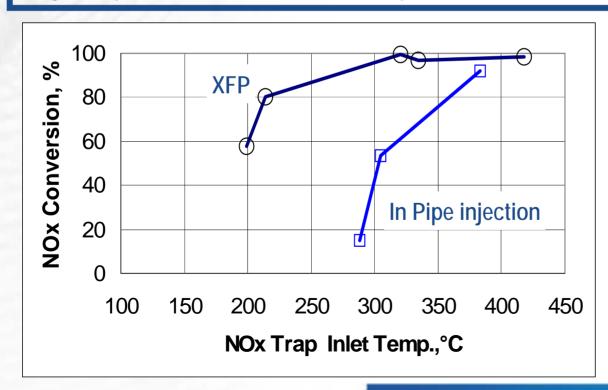

8 liter engine14 liter NOx trapTest at steady state condition

Speed	Load	XFP inlet temperatur e	Engine out NOx	Lean trapping time	NOx conversion	Fuel penalty
rpm	Nm	°C	ppm	S	%	%
1200	380	310	190	60 120 180	95 98 97	5.4 3.2 2.3
1200	770	340	430	30 60 120	98 93 52	4.9 2.9 1.6

XFP Operating Window

- Desired operating window compared to test points
 - Fuel penalty shown for each test point
 - "P" indicates XFP test only (without NOx trap)

Required operating window still being defined



Operation of LNT at Low Temperature

H₂+CO reductants give good NOx trap capacity at low temperature

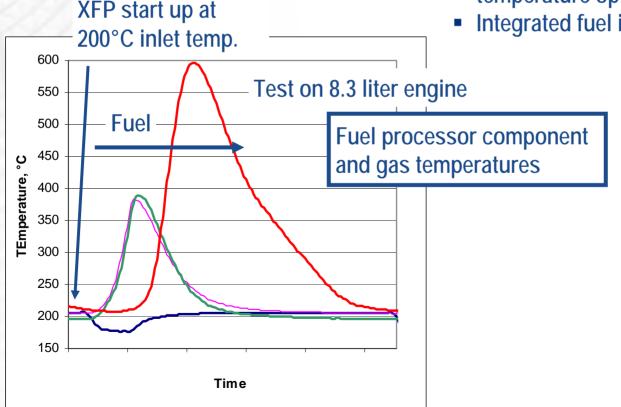
Comments

- Rig data shows H₂+CO will regenerate LNT down to 150°C
- This demonstration was limited by low temperature operation of XFP
- Cycle optimization should allow improved NOx conversion at low temperatures

- 8 liter engine
- 60s lean cycle

Note:

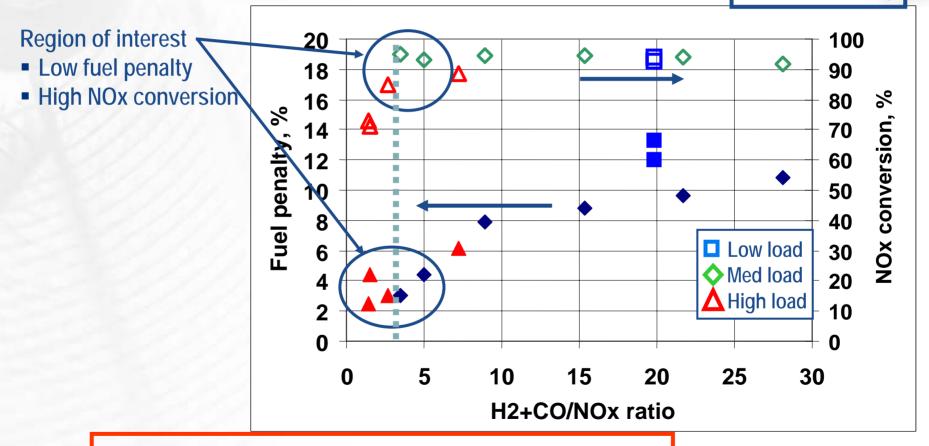
- Exhaust temperature limit of XFP is currently 220°C
- These data obtained using transient engine operation


Low Temperature Operation of XFP

<u>Issues</u>

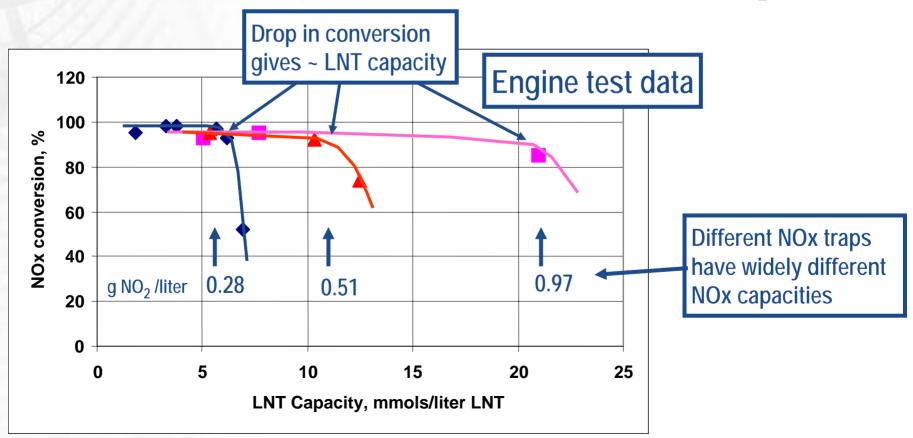
- Fuel injection, mixing and vaporization
- Low temperature light off
- Quick rise to reforming operation

Current status


- XFP can operate with exhaust temperatures down to 220°C
- Development systems show lower temperature operation
- Integrated fuel injection and mixing

Efficient Use of Reductant

- Reductant to NOx ratio varied by changing "rich" cycle conditions
- Reductant per cycle calculated from measured XFP fuel flow (model)
- 5 liter engine
- 5 liter NOx trap



→ Effective NOx trap can give high NOx conversions with $(CO+H_2)/NOx$ ratios ≥3

NOx Trap Capacity

- High NOx trap capacity demonstrated in engine tests with XFP
 - Cyclic XFP-NOx trap operation at steady state engine operation
 - Vary lean trapping time and rich regeneration time → varies NOx loading on LNT
- → Very effective LNT regeneration with reactive reductant (H₂+ CO)

LNT Desulfation Using the XFP

Strategy


- Use lean fuel combustion in XFP to raise exhaust temperature into downstream LNT
- Uniformly heat LNT to desulfation temperature
 - Control can be model based or can use measured exhaust temperature
- Operate XFP in rich mode to produced continuous or pulsed reductant in the exhaust (H₂+CO) at levels from 0.5% to 3%
 - Rich mode operation uses throttle or EGR to reduce O₂ level to 5-6%

Desulfation: XFP

8 liter engine with 17 liter NOx trap

- XFP provides good LNT temperature control
- XFP provided rich regeneration conditions: ~ 2% H₂+CO
- Desulfation starts at 620°C
- S desorption occurs over a wide temperature range

Summary

- XFP fuel processing system combined with NOx traps demonstrated on 5 to 14 liter diesel engines
 - Engine management limited to reducing exhaust O₂ to ~5% during rich cycle
 - NOx conversion > 90% achieved
 - Lean cycle times typically 60 to 180s
 - Fuel cost in the range of 2 to 3% over most engine conditions
 - XFP operation at exhaust temperatures as low as 220°C
 - Demonstrated regeneration of LNT at exhaust temperatures at low as 200°C
 - Exhaust temperature thermal management
 - LNT desulfation
 - PM filter active regeneration

Status

Work in progress

- Transient engine testing: 4Q2004
- On engine durability testing: 4Q2004
- Engine test of 3ed generation fuel processor design: 1Q05
- On vehicle demonstration: 20 or 302005

Product improvement directions

- Improved low temperature performance
 - Better coverage of test cycles that emphasize low speed urban conditions
- Shorter regeneration cycle time
 - Easier integration with transient control
- Develop improved transient control strategies
- Durability testing
 - Long term rig testing
 - On-engine testing of components
 - Contaminants testing

Thank you

Contracts

Business: Jonathan Roberts

cccJRoberts#@CatalyticaEnergy.com (remove ccc)

(630)762-0902

Technical: Ralph Dalla Betta

cccRDallaBetta@CatalyticaEnergy.com (remove ccc)

(650)940-6310